Increased glutamate decarboxylase mRNA levels in the striatum and pallidum of MPTP-treated primates.
نویسندگان
چکیده
The mRNA levels encoding for the enzyme glutamate decarboxylase (GAD67) were measured by computerized image analysis after in situ hybridization histochemistry and radioautography in the striatum and pallidum of normal squirrel monkeys (Saimiri sciureus), or after treatment with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). All MPTP-injected monkeys exhibited profound motor deficits including akinesia. The dopaminergic innervation, as visualized and quantified on x-ray films after 3H-mazindol binding on tissue sections, was uniformly lost throughout the striatum of MPTP-treated monkeys. Brain sections processed with a probe synthesized from a feline or human GAD67 cDNA exhibited intense radioautographic labeling throughout the striatum. When measured on x-ray films, the intensity of GAD67 mRNA labeling was increased in the striatum of MPTP-treated versus control monkeys. Increased labeling reached statistical significance in the dorsolateral sector of the rostral putamen and throughout the putamen and the caudate at the caudal, postcommissural, level. Analysis of emulsion radioautographs demonstrated that the increase in GAD67 mRNA labeling in MPTP-treated monkeys occurred in individual neurons of the striatum. In the external and internal segments of the pallidum, numerous neurons labeled with the GAD67 cRNA probe were visualized on emulsion radioautographs. The intensity of GAD67 mRNA labeling in single neurons of both pallidal segments was increased in MPTP-treated versus control monkeys. Construction of the histograms of frequency distribution of labeling indicated that this increase occurred in a majority of labeled neurons. The present study demonstrates that GAD67 mRNA levels are significantly altered in the striatum and pallidum of parkinsonian monkeys. The preferential increase of GAD67 mRNA labeling in the dorsolateral putamen, which receives afferents from the sensorimotor cortex, provides further evidence of the involvement of GABAergic transmission in the expression of the motor deficits elicited after MPTP. In addition, increased GAD67 mRNA levels in the internal segment of the pallidum support the hypothesis of an increased activity of GABAergic neurons in the output structures of the basal ganglia in parkinsonism.
منابع مشابه
Subthalamic nucleus lesions: widespread effects on changes in gene expression induced by nigrostriatal dopamine depletion in rats.
Lesions of the subthalamic nucleus block behavioral effects of nigrostriatal dopamine depletion in rats and primates, but the contribution of this region to the molecular effects of dopaminergic lesions is unknown. The effects of subthalamic nucleus lesions alone or in combination with a 6-hydroxydopamine-induced lesion of the substantia nigra were examined in adult rats. Unilateral subthalamic...
متن کاملDoes MPTP intoxication in mice induce metabolite changes in the nucleus accumbens? A ¹H nuclear MRS study.
Using in vivo ¹H NMR spectroscopy in a mouse model of Parkinson's disease, we previously showed that glutamate concentrations in the dorsal striatum were highest after dopamine denervation associated with an increase in gamma-aminobutyric acid (GABA) and (Gln) glutamine levels. The aim of this study was to determine whether the changes previously observed in the motor part of the striatum were ...
متن کاملPartial Cloning and Nucleotide Sequencing of Glutamate Decarboxylase Gene Isoform 65 from Human Brain
Background: Gamma -aminobutyric acid (GABA), a non-protein amino acid acts as an inhibitory neurotransmitter in the central nervous system of mammalians. The glutamate decarboxylase (GAD) is responsible for the conversion of L-glutamate to GABA. The human brain has two isoforms of this enzyme, GAD65 and GAD67 that differ in molecular weight, amino acid sequence, antigenicity, cellular location ...
متن کاملModification of the number and phenotype of striatal dopaminergic cells by carotid body graft.
In non-human primates, striatal tyrosine hydroxylase-immunoreactive (TH-ir) cells are increased in number after dopamine depletion and in response to trophic factor delivery. As carotid body cells contain the dopaminotrophic glial cell line-derived neurotrophic factor (GDNF), we evaluated the number, morphology and neurochemistry of these TH-ir cells, in the anterior and posterior striatum of f...
متن کاملChronic Levodopa Administration Followed by a Washout Period Increased Number and Induced Phenotypic Changes in Striatal Dopaminergic Cells in MPTP-Monkeys
In addition to the medium spiny neurons the mammalian striatum contains a small population of GABAergic interneurons that are immunoreactive for tyrosine hydroxylase (TH), which dramatically increases after lesions to the nigrostriatal pathway and striatal delivery of neurotrophic factors. The regulatory effect of levodopa (L-Dopa) on the number and phenotype of these cells is less well underst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 14 10 شماره
صفحات -
تاریخ انتشار 1994